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Homogeneous, approximately isotropic turbulence at two Taylor-scale Reynolds num-
bers, Rλ = 50, 190, with a mean transverse temperature gradient is passed through an
axisymmetric contraction. The effects of the straining on the velocity field, and on the
passive scalar field, are investigated within the contraction as are the effects of releasing
the strain in the post-contraction region. Components of the fluctuating velocity and
scalar gradient covariance are measured in order to understand their relation to
the large-scale anisotropy of the flow. The scale-dependent spectral evolution of the
scalar is also determined. A tensor model is constructed to predict the evolution
of the fluctuating scalar gradient covariance. The model constants are determined
in the post-contraction relaxation region, where the flow geometry does not vary.
The model is shown to perform well throughout the flow, even in the contraction in
which the geometry varies. Rapid distortion theory is applied to the scalar field in
the contraction, and its solutions are compared to the experimental results.

1. Introduction
Understanding the dynamics of the small-scale turbulent velocity structure is central

to proper turbulence modelling, such as large-eddy simulation (LES; Meneveau &
Katz 2000) and Reynolds-averaged Navier–Stokes (RANS; Hanjalic 1994). Further,
the small-scale structure of a scalar is central to many engineering applications, such
as mixing (e.g. Warhaft 2000; Dimotakis 2005), reactions and combustion (e.g. Peters
1983; Pope 1990; O’Young & Bilger 1997; Bilger 2004).

The objective of this work is to investigate the effects of straining on a passive scalar
field. To address this we pass approximately isotropic wind-tunnel turbulence, with
an imposed transverse passive temperature gradient to provide the scalar fluctuations,
through an axisymmetric contraction. After the straining the turbulence is allowed to
relax towards its preferred state. In both the straining and the relaxation regions the
small-scale statistics are measured and compared with analytical results. We consider
the components of the scalar dissipation and their relation to the large-scale structure
of the flow field. The measurements show that the components of the fluctuating scalar
gradient covariance tensor are highly dependent on the velocity structure, indicating
that the assumption of approximate isotropy at small scales in the scalar field only ap-
plies to special cases. Our study stems from the earlier work of Ayyalasomayajula &
Warhaft (2006) which focused purely on the velocity field.

† Email address for correspondence: armann@ru.is
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Mean straining occurs in any turbulent boundary layer and in many internal flows,
such as nozzles and diffusers. In the earliest investigations, researchers (Prandtl 1933;
Taylor 1933; Batchelor 1953) realized that when the straining motion is sufficiently
rapid, the nonlinear and viscous forces in the Navier–Stokes equations become
negligible, and the flow equations become linear. This led to the introduction of rapid
distortion theory (RDT), which has been applied to a variety of flow geometries (e.g.
see Savill 1987; Hunt & Carruthers 1990). Primarily due to its simplicity compared
to solving the full Navier–Stokes equations, RDT is widely used in engineering
applications in which turbulent flows undergo straining motion. The basic assumption
of RDT is that in the rapid distortion limit, each Fourier mode describing the flow
field evolves independently.

In the rapid distortion limit the scalar equation becomes particularly simple (see
§ 2.2). RDT predictions for the scalar field have been studied extensively (e.g. see
Townsend 1976), for both fixed strain rate and variable straining, and analytical
expressions for the scalar spectrum and velocity–scalar co-spectrum have been derived
for some geometries (Wyngaard 1988; Rogers 1991; Rahai & LaRue 1995). In this
study we rederive the evolution of the scalar spectrum according to RDT in the
simple case of the axisymmetric contraction and compare it with experiments.

The relaxation of highly anisotropic turbulence also has been investigated
extensively (Rotta 1951; Launder, Reece & Rodi 1975; Lumley & Newman 1977;
Newman, Launder & Lumley 1981; Chung & Kim 1995; Reynolds & Kassinos 1995;
Ayyalasomayajula & Warhaft 2006). However, there appears to be very little work
on passive scalars and their derivative moments for the simple, but important, flow
geometry studied here. Previous experiments have focused on practical applications
in more complex flows (Rogers 1991; Rahai & LaRue 1995). Here a tensor model is
introduced to describe the evolution of the components of the scalar dissipation. The
model constants are determined in the post-straining region, where the geometry of
the flow is fixed, while the flow evolves from anisotropic initial state towards a more
isotropic state. The model is then shown to perform well in the straining region. The
model constants give important insight into the relation between the structure of the
passive scalar field and the velocity field. The authors believe that the model could
be useful in refining models of scalar dissipation as well as aiding with design of
geometry in which reactive flows occur.

2. Governing equations
The main objective of this work is to study the passive scalar field. The background

velocity field is documented, for completeness. For the details of the governing
equations for the straining as well as their modification for RDT and the post-
straining relaxation we refer to Ayyalasomayajula & Warhaft (2006).

2.1. Equations for the passive scalar

A conserved passive scalar θ is a non-reactive diffusive contaminant that is present
in such low concentration that it has no dynamical effect on the fluid motion itself.
The equation describing the scalar transport is given by

Dθ

Dt
= Γ ∇2θ, (2.1)

where D/Dt ≡ ∂/∂t + Ui∂/∂xi is the material derivative following a fluid particle; Ui

is the instantaneous velocity; θ is the scalar concentration from here on taken to be
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temperature, which is assumed to have small enough variations so that the material
properties of the fluid are constant; and Γ is the thermal diffusivity.

The equation for the scalar fluctuations, θ ′ = θ − 〈θ〉, can be shown to be (Tennekes
& Lumley 1972)

Dθ ′

Dt
= −uk

∂〈θ〉
∂xk

+
∂

∂xk

〈ukθ
′〉 + Γ

∂2θ ′

∂xk∂xk

. (2.2)

Here, ui = Ui − 〈Ui〉 is the fluctuating velocity component, and the angle brackets
represent a local ensemble or time average. From (2.2) it can be shown that the
equation for the evolution of the scalar variance 〈θ ′2〉 is

D̄〈θ ′2〉
D̄t

+
∂

∂xk

(
〈ukθ

′2〉 − Γ
∂〈θ ′2〉
∂xk

)
= − 2〈ukθ

′〉∂〈θ〉
∂xk

− 2Γ

〈
∂θ ′

∂xk

∂θ ′

∂xk

〉
, (2.3)

where D̄/D̄t = ∂/∂t + 〈Ui〉∂/∂xi is the mean substantial derivative. The last term on
the right-hand side of (2.3) is the scalar dissipation rate, which from here on will be
denoted as εθ .

Taking the gradient of (2.2) we obtain the following relation for the fluctuating
scalar gradients ζj ≡ ∂θ ′/∂xj :

Dζj

Dt
+ ζk

∂Uk

∂xj

= −∂uk

∂xj

∂〈θ〉
∂xk

− uk

∂2〈θ〉
∂xk∂xj

+
∂

∂xj

〈ukζk〉 + Γ
∂2ζ

∂xk∂xk

. (2.4)

Multiplying (2.4) by ζi , adding the resulting equation to itself, interchanging the
subscripts i and j and taking an ensemble average, we obtain the following equation
for the fluctuating scalar covariance tensor:

D̄〈ζiζj 〉
D̄t

+
∂

∂xk

〈ukζiζj 〉 = −∂〈θ〉
∂xk

〈
∂uk

∂xj

ζi +
∂uk

∂xi

ζj

〉

−
〈

ζiζk

∂uk

∂xj

+ ζj ζk

∂uk

∂xi

〉
−

(
〈ζiζk〉 ∂〈Uk〉

∂xj

+ 〈ζj ζk〉 ∂〈Uk〉
∂xi

)
+ Γ

∂2

∂xk∂xk

〈ζiζj 〉

−
(

〈ζiuk〉 ∂2〈θ〉
∂xk∂xj

+ 〈ζjuk〉 ∂2〈θ〉
∂xk∂xi

)
− 2Γ

〈
∂ζi

∂xk

∂ζj

∂xk

〉
. (2.5)

This equation can be simplified considerably by considering relative magnitudes of
the different terms (see below).

2.2. The effects of the distortion on the scalar spectrum

Equation (2.1) is considerably simplified for a homogeneous passive scalar field
evolving according to the RDT framework (e.g. see Pope 2000):

D̄θ

D̄t
= 0. (2.6)

The flow presented in this study is approximately homogeneous, particularly over
small increments. Thus it is useful to compare the experimental results to the idealized
case of homogeneous axisymmetrically strained turbulence. For such flow, we can
artificially impose periodicity, which allows us to investigate the spectral evolution
of the scalar field. The evolution equation of the discrete Fourier coefficient follows
directly from equation (2.6):

dθ̂ κ̂

dt
+ 〈Uj 〉iκ̂ j θ̂ κ̂ = 0 (2.7)
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Here, θ̂ κ̂ is the time-dependent Fourier coefficient at wavenumber κ̂ . Further
manipulation yields

d

dt
(θ̂ κ̂ θ̂

∗
κ̂ ) = 0, (2.8)

where θ̂ ∗
κ̂ is the complex conjugate of θ̂ κ̂ ; i.e. the product (θ̂ κ̂ θ̂

∗
κ̂ ) is independent of

time in the rapid distortion limit.
The scalar field, written in terms of its Fourier components, is

θ(x, t) =
∑

κ̂

θ̂ κ̂e
i κ̂ ·x + g · x, (2.9)

where g(t) is the mean thermal gradient of the flow.
Applying (2.6) to the thermal field in (2.9) we obtain the following relations for the

time evolution of the wavenumber and the mean thermal gradient:

dκ̂i

dt
+ κ̂k

∂〈Uk〉
∂xi

=0, (2.10)

dgi

dt
+ gk

∂〈Uk〉
∂xi

= 0. (2.11)

To proceed we investigate the geometry of the mean flow. For an axisymmetric
contraction the mean velocity gradient tensor is given by

∂〈Ui〉
∂xj

=

⎡
⎢⎣

Sλ 0 0

0 − 1
2
Sλ 0

0 0 − 1
2
Sλ

⎤
⎥⎦ , (2.12)

where Sλ = Sλ(t) is the principal mean strain, the largest eigenvalue of the mean rate
of strain tensor, defined by S̄ij ≡ (∂〈Ui〉/∂xj + ∂〈Uj 〉/∂xi)/2. The characteristic mean
strain, used to parameterize the strain rate, is defined as S = (2S̄ij S̄ij )

1/2. For the

axisymmetric contraction it follows that S =
√

3Sλ.
Due to the simple form of ∂〈Ui〉/∂xj , each component of the wavenumber evolves

independently according to (2.10):

κ̂ (i)(t) = κ̂
◦
(i)e

−A(i)

∫ t

0 Sλ(t)dt = κ̂
◦
(i)e

−A(i)c. (2.13)

Here, κ̂◦ is the initial wavenumber that describes the thermal field at time t = 0;
A = [1, −1/2, −1/2]T ; and c is a dimensionless time defined as dc = Sλdt . (Note that
summation over indices does not apply when they appear inside parentheses.)

We now focus our attention to the spectral evolution of the scalar field. The scalar
spectrum (scalar function of the three-dimensional wavenumber) is given by

Φ(κ, t) =
∑

κ̂

δ(κ − κ̂)〈θ̂∗
κ̂ θ̂κ̂〉 (2.14)

Equation (2.8) implies that the scalar spectrum maintains it form during the straining
but is shifted in wavenumber:

Φ(κ, c) = Φ(κ◦, 0). (2.15)

Our experimental methods are limited to resolving the spectrum function of the
longitudinal wavenumber Eθ (κ1, t) defined by

Eθ (κ1, t) =

∫ ∫ ∞

−∞
Φ(κ, t) dκ2 dκ3. (2.16)
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In light of (2.15) the one-dimensional spectra before and after the contraction
are

Eθ (κ1, c) = ecEθ (κ◦
1 , 0). (2.17)

Equation (2.15) allows us to evaluate the evolution of the scalar variance as well as
the scalar covariance variance tensor as the flow passes through the contraction. The
scalar variance evolves according to

〈θ ′2〉t = 〈θ ′2〉t =0, (2.18)

and the fluctuating scalar covariance is given by〈
∂θ ′

∂x(i)

∂θ ′

∂x(j )

〉
t

= e−(A(i)+A(j ))c

〈
∂θ ′

∂x(i)

∂θ ′

∂x(j )

〉
t = 0

. (2.19)

It is demonstrated below that in our experiments the scalar spectra deviate from
RDT predictions at the highest wavenumbers. This is a direct consequence of the
non-rapid effects at the higher wavenumbers.

2.3. Model for the evolution of the scalar covariance tensor

For the present flow, after the strain has been released, (2.5) reduces to

d〈ζiζj 〉
dt

= −
〈

ζiζk

∂uk

∂xj

+ ζj ζk

∂uk

∂xi

〉
− 2Γ

〈
∂ζi

∂xk

∂ζj

∂xk

〉
. (2.20)

Here, we have assumed homogeneity to drop the second term on the left-hand
side of (2.5), as well as the third through fifth terms on the right-hand side.
Scaling indicates that the second term on the right-hand side of (2.5), involving
fluctuating gradients only, should be at least 
/λ greater than the first term, involving
the mean temperature gradient. Here, 
 is the integral scale and λ is the Taylor
microscale of the flow. Thus although the mean temperature gradient is responsible
for the fluctuating scalar covariance, it does not appear explicitly in (2.20). This is
similar to the situation for the mean square vorticity budget. Here the mean square
vorticity fluctuations are approximately independent of the mean flow (Tennekes &
Lumley 1972, p. 86). We note that scaling strictly applies only for high Reynolds
numbers. However, re-analysis of our previous data (Gylfason & Warhaft 2004) with
a comparable mean temperature gradient indicate that even at Rλ = 50 the first term
on the right-hand side of (2.5) is an order of magnitude smaller than the second
term.

Defining the quantities Rij and ε
ζ
ij to be the first and the second term on the

right-hand side of (2.20) and the quantity Cij = 〈ζiζj 〉, (2.20) becomes

dCij

dt
= −Rij − ε

ζ
ij . (2.21)

We now seek to produce a non-dimensional relationship for the fluctuating scalar
covariance tensor. Dividing (2.21) by Ckk yields the following:

d

dt

(
Cij

Ckk

)
= − ε

ζ
kk

Ckk

{
Rij

ε
ζ
kk

+
ε

ζ
ij

ε
ζ
kk

− Cij

Ckk

(
Rkk

ε
ζ
kk

+ 1

)}
. (2.22)

The prefactor ε
ζ
kk/Ckk is used in order to define the dimensionless time ds = (εζ

kk/

Ckk) dt . (The relationship between s and tε/k, where k is the turbulent kinetic energy,
is discussed below.)
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Equation (2.22) allows us to construct a simple tensor model, which aims to
capture the important aspects of our experimental findings on the evolution of the
scalar covariance. To achieve this, the tensors Rij and ε

ζ
ij , are modelled as functions

of the measurable flow parameters.
The source term and the gradient dissipation term may be written as a second-order

tensor function of the flow parameters:

Rij + ε
ζ
ij =Fij

(
Ckl, 〈ukul〉, ε, ν, ε

ζ
kk, Pr

)
. (2.23)

In this representation it has been assumed that Rij and ε
ζ
ij depend primarily on the

Cij and 〈uiuj 〉, whereas the dependence on the mean scalar gradient ∂〈θ〉/∂xi has
been omitted.

The invariance principle allows us to write

Rij + ε
ζ
ij = CklHijkl

(
〈umun〉, ε, ν, Pr, εζ

kk

)
, (2.24)

where Hijkl is a fourth-order tensor constructed from 〈uiuj 〉 and δij . We propose the
following model for the terms on the right-hand side of (2.22):

Rij

ε
ζ
kk

+
ε

ζ
ij

ε
ζ
kk

=
1

3
f (1)δij + f (2) Cij

Ckk

+ f (3) Sij

Skk

. (2.25)

Here Sij = 〈uiuj 〉; f (1), f (2), f (3) are scalar functions of the Reynolds number and
Prandtl number. We are unable to estimate the importance of the higher-order terms
SilCjl + SjlCil, S

2
ij , S

2
ilCjl + S2

j lCil . Further refinement of the model would allow for
dependence of these higher-order terms.

Rewriting (2.22) in terms of departure from isotropy yields

d

ds
C ′

ij = −
{

R′
ij + ε

ζ ′
ij − C ′

ij

(
Rkk

ε
ζ
kk

+ 1

)}
, (2.26)

where C ′
ij = Cij/Ckk − δij /3, R′

ij = Rij/ε
ζ
kk − Rkk/ε

ζ
kkδij /3 and ε

ζ ′
ij = ε

ζ
ij /ε

ζ
kk − δij /3.

Applying the model in (2.25) to (2.26) we obtain

d

ds
C ′

ij + f (4)C ′
ij = −f (3)bij , (2.27)

where bij = Sij /Skk − δij /3 is the fluctuating velocity anisotropy tensor and

f (4) = −(f (1) + f (3)). Note that in the current experiments we only resolve the ε
ζ
11

component of the tensor ε
ζ
ij . As a result, when determining the time s we assume that

ε
ζ
kk = 3ε

ζ
11.

The model in (2.25) can be used for varying flow geometry by including the third
term on the right-hand side of (2.5), which quickly becomes important when mean
straining is present. This approach is useful when the straining is not sufficiently rapid
to apply the results of § 2.2. The equation becomes

d

ds
C ′

ij = −f (4)C ′
ij − f (3)bij + Mij , (2.28)

where the tensor Mij is defined by the following:

Mij =
Ckk

ε
ζ
kk

{(
C ′

ij +
1

3
δij

)
2C ′

lm

∂〈Um〉
∂xl

− C ′
il

∂〈Ul〉
∂xj

− C ′
j l

∂〈Ul〉
∂xi

− 2

3
S̄ij

}
. (2.29)
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Figure 1. A sketch of the wind-tunnel facility. See § 4.1 for the definition of effective
contraction.

3. Apparatus
Turbulence is generated in our vertical wind-tunnel facility (Sirivat & Warhaft

1983), by means of active (Makita 1991; Mydlarski & Warhaft 1996) and passive
grids, both with mesh sizes of M = 5.08 cm. For the passive grid, the Reynolds number
is Rλ ≈ 50 in the pre-contraction stream, whereas for the active grid it is Rλ ≈ 190.
The turbulent flow is allowed to decay for 40 mesh lengths before passing through a
4:1 axisymmetric contraction which is identical to that described in Warhaft (1980)
and Ayyalasomayajula & Warhaft (2006).

A linear temperature profile is generated in the tunnel plenum using differentially
heated ribbons (a ‘toaster), before passing through a series of honeycomb, screens
and finally a flow-conditioning contraction, which produces nearly laminar flow. The
turbulence is generated by the active or passive grid at the entrance to the test
section, and the temperature fluctuations are generated by the action of the turbulent
eddies on the mean temperature gradient, as in Sirivat & Warhaft (1983). The
temperature gradient was measured at several locations (see below), before and after
the contraction region with a thermocouple rake, consisting of 6–11 thermocouples.
A sketch of the facility is shown in figure 1.

The temperature fluctuations were measured with derivative probes, two parallel
wires, connected to DC temperature bridges. Platinum wires, diameter D = 0.63 μm
with an etched length of 0.32mm were used. The distance between the two wires was
Δ = 1 mm and Δ =0.6 mm. The smaller separation was used in the higher-Reynolds-
number active grid flow, for which the Kolmogorov microscale was η = 0.28mm,
while the larger separation was used for the passive grid flow, where η = 0.41 mm
(see table 1). The transverse derivative (y) was obtained by subtracting the signals
from the two wires, while the longitudinal derivatives (x) as well as other longitudinal
statistics were obtained using Taylor’s frozen flow hypothesis for each of the wires
independently. Data of figure 2 of Gylfason, Ayyalasomayajula & Warhaft (2004)
suggest Taylor’s hypothesis holds well for the turbulence intensities observed in the
present work.

Velocity fluctuations were measured with TSI 1241 X-array probes connected
to Dantec 55M01 constant temperature anemometers. Tungsten wires of 3.05 μm
diameter were used, with an etched length of 0.6 mm. For further information on our
temperature and velocity anemometry we refer the reader to Mydlarski & Warhaft
(1998).
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Figure 2. (a) The mean velocity 〈U1〉 versus X/M . Circles: passive grid; squares: active grid.
The solid lines show an error function curve fit to the data. (b) Components of the Reynolds
stresses 〈uiuj 〉 versus X/M . Passive grid: circles, 〈u1u1〉; squares, 〈u2u2〉. Active grid: diamonds,
〈u1u1〉; triangles, 〈u2u2〉. The vertical lines indicate the location of the contraction in both
figures.

Temperature and velocity signals were band-pass filtered and digitized with a 12
bit A/D converter. The high-pass filter was set at fh = 0.01 Hz, while the low-pass
filter frequency was varied fl = 2500–12 000 Hz, depending on flow parameters. The
sampling frequency was set at fs = 2fl . Both temperature and velocity statistics were
calculated from data series containing 8 × 106 points.

4. Results
Table 1 shows the flow parameters for the two conditions studied. Notice that

the velocity field has undergone slight straining before entering the contraction, with
the result that the fluctuating velocity component in the longitudinal direction (u)
is smaller than the transverse component (v) for the passive grid. This is discussed
below. Further upstream from the contraction the velocity field is close to isotropic,
consistent with the observation of Comte-Bellot & Corrsin (1966). For the active
grid, which departs more markedly from isotropy (Mydlarski & Warhaft 1996), the
pre-contraction straining reduces the anisotropy of the flow field but does not produce
isotropy.

Figure 2(a,b) show the evolution of the mean velocity and the Reynolds stresses
along the test section of the wind-tunnel. The effects of the contraction are felt both
before the flow enters the contraction and after it exits. The velocity profile is smooth
and is found to be well approximated by an error function.

Figure 3(a) shows the mean temperature gradients for the active and passive grids.
For the higher-Reynolds-number flow (active grid) the gradient decays noticeably due
to the intense turbulent mixing (Mydlarski & Warhaft 1998, p. 142). However the ratio
(∂T /∂x)/(∂T /∂y) ∼ 0.05; thus production effects in the x direction are small compared
with those in the transverse, y, direction, and we will show that the active grid results
are qualitatively similar to the passive grid, for which (∂T /∂x)/(∂T /∂y) ≈ 0.

Figure 3(b) shows the evolution of the ratio of the scalar variance and the mean
thermal gradient as a function of normalized distance, measured from the beginning
of the test section. The normalized scalar variance decreases in the contraction by
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Active grid Passive grid

Before After Before After

M (cm) 5.08 5.08
U (m s−1) 3.7 13.0 4.7 17.7
dT/dy (K m−1) 3.61 6.85 5.5 11.0
〈u2〉 (m2 s−2) 0.153 0.045 0.013 0.005
〈v2〉 (m2 s−2) 0.119 0.238 0.016 0.033
k = 1

2
(〈u2〉 + 2〈v2〉) (m2 s−2) 0.195 0.260 0.023 0.036

〈θ ′2〉 (K2) 0.072 0.075 0.009 0.011


=
(

2
3
k
)3/2

/ε (m) 0.091 0.273 0.020 0.266

λ=
(

2
3
k/(ε/15ν)

)1/2
(mm) 7.77 12.1 5.99 19.5

η = (ν3/ε)1/4 (mm) 0.289 0.336 0.435 0.702
τη = (ν/ε)1/2 (ms) 5.57 7.52 12.7 33.0

ε = ν
(
5〈

(
∂u
∂x

)2〉 + 5〈
(

∂v
∂x

)2〉
)

(m2 s−3) 0.484 0.265 0.094 0.014

εθ = 2Γ
(〈(

∂θ
∂x

)2〉 + 2〈( ∂θ
∂y

)2
〉)

(K2 s−1) 0.189 0.262 0.037 0.067

Re
 =
(

2
3
k
)1/2


/ν 2190 7585 163 2667

Rλ =
(

2
3
k
)1/2

λ/ν 187 336 49 200

Table 1. Flow parameters for the two conditions studied. Flow parameters for the two grids
are listed both before (at X/M = −2) and after the contraction (at X/M = 5.5), where M is
the mesh length (see figure 1). The physical contraction is located 40 mesh lengths from the
turbulence generating grid, between 0 � X/M � 4.13, while the effective contraction (see
figure 4) is between −1 � X/M � 5.
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Figure 3. (a) The mean temperature gradient β normalized by the mean temperature gradient
in the pre-contraction region at X/M = −7.25, β◦ versus X/M . (b) The scalar variance divided
by the local mean scalar gradient 〈θ ′2〉/β2 versus X/M . For both figures, circles: passive grid;
squares: active grid; the solid vertical lines show the location of the contraction.

four, due to the doubling of the mean gradient. We will show below (figure 6) that
the variance itself remains constant.

4.1. Straining region

We now focus our attention on the straining region in the flow. Both velocity and
scalar measurements were conducted inside the contraction.
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Figure 4. (a) The principal mean strain rate parameter Sλ versus X/M . Solid line: passive
grid; dashed line: active grid. (b) The strain parameters Sk/ε (circles) and Sτη (squares) versus
X/M . Open symbols: passive grid; filled symbols: active grid. The solid vertical lines indicate
the contraction region, while the dashed vertical lines show the effective straining region.

4.1.1. Velocity field

The principal mean strain rate Sλ characterizes the mean flow through the straining
region. For an axisymmetric contraction it is given by Sλ = ∂〈U1〉/∂x. As shown above
the mean velocity profile through the contraction is well approximated by the error
function, from which Sλ is determined. Note that the strain is non-uniform; hence
statistics are represented as functions of c defined by dc = Sλdt , and c =0 occurs at
the beginning of the effective straining region (see below). Inhomogeneity due to the
variable strain is not believed to have significant effect on the small-scale statistics
studied in this paper (see also Ayyalasomayajula & Warhaft 2006).

Figure 2(a,b) showed that some straining also occurs outside the contraction region,
due to viscous and boundary-layer effects. As a result we base our analysis on the
effective straining region taken to be between the locations x1, x2 in which (〈U1〉x1,x2

−
〈U1〉i)/(〈U1〉f − 〈U1〉i) = 0.025, 0.975, where 〈U1〉i is the pre-contraction velocity and
〈U1〉f is the post-contraction velocity. Figure 4(a,b) indicate the extent of this region.
The effective straining region is therefore between X/M = −1.0 and X/M = 5.0.

Figure 4(b) shows the shear parameters as functions of distance in the contracting
stream. The value of the strain parameters Sk/ε and Sτ are essential in determining
the importance of various terms in the evolution equations for the scalar field as well
as the velocity field. In order for RDT to apply the parameters must satisfy Sk/ε � 1
and Sτ � 1. In our measurements the first constraint is weakly satisfied (Sk/ε > 10).
Here, RDT predicts the behaviour of the large-scale statistics reasonably well. The
second constraint is not satisfied, and the effect of the strain on the small scales is
not rapid (Ayyalasomayajula & Warhaft 2006).

The evolution of the velocity anisotropy tensor, bij , in the straining region is shown
in figure 5. Both the active and the passive grids display very similar responses to the
straining. The production for the longitudinal component is negative, P11 = −〈u2

1〉Sλ,
while it is positive for the transverse components, e.g. P(ii) = 〈u2

(i)〉Sλ/2 (i =2, 3). In
the early stages the production of the transverse components is expected to be less
than exponential due to the redistribution term in the RDT equations (Pope 2000);
however at long times the effects of the redistribution are diminished. The long-time
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Figure 5. The evolution of the anisotropy tensor bij in the straining region as a function of c.
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Figure 6. The temperature fluctuation variance 〈θ ′2〉 versus c in the contraction.
Circles: passive grid; squares: active grid.

prediction is shown in figure 5, assuming isotropic velocity field at time c = 0, and the
agreement with the experimental data is found to be very good. Note the difference
in initial conditions of the flow isotropy at the beginning of the effective contraction
for the passive grid and active grid flow (see figure 2(b) and table 1).

4.1.2. Scalar field

The evolution of the temperature variance divided by the local temperature gradient
was shown in figure 3. Figure 6 shows that the non-normalized temperature variance
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Figure 7. The fluctuating temperature gradient anisotropy tensor C ′
ij as a function of c in the
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22.
The solid line is the RDT prediction derived from (2.19), assuming isotropic inlet conditions.

remains constant in the contracting stream. This is consistent with the predictions of
RDT (2.18). This shows that the straining is rapid for the large-scale scalar quantities.

Figure 7 shows the fluctuating scalar gradient anisotropy tensor C ′
ij in the

contraction. Also plotted are the RDT predictions given in (2.19), assuming isotropic
inlet conditions. For both Reynolds numbers, RDT gives a surprisingly good
prediction, considering that the strain rate is fairly low at the small scales. It is
interesting to note that the magnitude of both measured components are smaller than
predicted by RDT. This is due to the interaction or cross-talk between wavenumber
components at the small scales, in contrast to RDT in which the Fourier modes
evolve independently. Therefore, RDT overestimates the transverse components and
underestimates the longitudinal component.

The scalar dissipation, εθ = 2Γ Ckk , in the contraction is shown in figure 8. The
predictions of RDT are also shown using the same assumptions as in figure 7. We
see considerably less increase in the thermal dissipation than the predictions of RDT
suggest. Here, there are two competing mechanisms: the conduction term seeks to
reduce the energy in all components, particularly in the transverse directions, while
the net effect of the redistribution term is to channel some of the energy from the
transverse components into the longitudinal component.

Figure 9 shows the spectra of the temperature fluctuations at the inlet and the
exit of the contraction for both the active and the passive grids, as functions of the
initial wavenumber (κ◦

1 ). The spectra, before and after the contraction, are the same
at the lower wavenumbers as expected from RDT predictions (2.17). The energy is
increased at the higher wavenumbers. The effect is more prominent for the active grid
flow than the passive grid, due to the lower strain rate (see figure 4). Note the peak
at κ◦

1 ∼ 3 m−1 for the active grid flow. This is due to the rotation of the grid bars and
does not appear to affect statistics at the inertial and dissipation scales (Mydlarski &
Warhaft 1998).
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4.2. Relaxation region

As the flow exits the contraction the strain is released and the flow relaxes back
towards a more isotropic regime. The return to isotropy of the velocity field has
previously been discussed in detail (e.g. see Ayyalasomayajula & Warhaft 2006 and
references therein), but less attention has been given to the passive scalar field,
although Warhaft (1980) looked at the effect of varying the scalar integral scale and
observing its subsequent decay rate after it had been strained.
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Figure 10. The velocity anisotropy tensor bij in the post-contraction region as a function of
time r , defined by dr =(k/ε) dt , initialized at the end of the effective straining region, X/M = 5.
passive grid: circles, b11; squares, b22. Active grid: diamonds, b11; triangles, b22. The lines are
Rotta’s (1951) model predictions, using the value Ck =3 for Rotta’s constant.

4.2.1. Velocity field

Figure 10 shows the relaxation of the current flow field in terms of the integral
time scale. For a detailed discussion about the relaxation of the large-scale flow field,
see Ayyalasomayajula & Warhaft (2006).

4.2.2. Scalar field

The flow is highly anisotropic as it exits the contraction: the anisotropy and its
decay are clearly reflected in the scalar gradients. Figure 11 shows the evolution of the
anisotropy tensor for the fluctuating scalar gradient. Also shown in figure 11 is the
integral of (2.27), where the unknown parameters f (3), f (4) have been obtained from
the active grid measurement, given the evolution of bij in the same flow. The passive
grid flow measurements do not allow for sufficiently accurate estimation of the model
constant due to the short evolution. The value of the constants give some idea of
relative importance of the terms in the model equation (2.25). Note that to resolve
the constant f (2) in (2.25), more detailed measurements are needed. Knowledge of
f (2) would allow us to predict the evolution of the scalar dissipation, 2Γ Ckk .

Figure 12 shows the relation between the flow time scales and the scalar time scale
throughout the whole flow. The ratio between the integral – and the thermal time
scale, and the ratio between dissipation – and the thermal time scale, suggest that
these scales are intrinsically connected. However the exact relation between the time
scale cannot be estimated unless more components of ε

ζ
ij are measured. The figure

also shows the relation between the integral time r and the thermal time s in the
relaxation region. With approximately linear relation between the integral time scale
τl and the thermal time scale τζ (2.27) allows us to resolve the small-scale scalar field
from knowledge of the velocity field.

After the contraction, energy is redistributed between the wavenumbers, such
that the transverse components lose their energy to the longitudinal ones (e.g.
see Ayyalasomayajula & Warhaft 2006). This effect is the strongest at the higher
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wavenumbers, since the redistribution is most effective at the small length scales, due
to the small time scales. To demonstrate this dynamic effect, figure 13 shows the
one-dimensional spectra in κ1 just after the straining region and further downstream.
There is a significant increase in the energy at the higher wavenumbers, extending
well into the inertial range. This ‘bump’ has the effect of decreasing the slope of the
spectrum. Presumably the −5/3 slope would be recovered if the flow were allowed a
longer evolution time.

4.3. Model applied to the straining region

We have used the experimental results obtained in the relaxation region to determine
values for the model constants in (2.27) at the given Reynolds and Prandtl numbers.
In figure 14 we show how the extended model, presented in (2.28), performs in
the straining region. The equation has been numerically integrated using the known
evolution of the velocity field. The graph shows that the model performs considerably
better than the RDT prediction presented in figure 7. Included in figure 14 is a
comparison, when the model constants in (2.28) are set to zero.

5. Conclusions
The effects of straining on a passive scalar field in turbulent flow was investigated

and compared with the RDT predictions. The strain rate is such that the large scales
statistics are found to be well predicted by RDT, while the small scales are found to
deviate from RDT due to the nonlinear terms ignored by RDT.

After the flow exited the straining region, we investigated its relaxation to a more
isotropic state. We have successfully derived a simple tensor model that predicts the
evolution of the thermal fluctuations from a highly anisotropic initial condition to a
more relaxed (but not isotropic) state. The relaxation manifests itself initially in the
scalar spectra as a ‘bump’ at the higher wavenumbers due to the redistribution at
the smallest scales. This was also observed in the velocity field (Ayyalasomayajula &
Warhaft 2006)

The model was shown to apply to the straining region as well as to the relaxation
region, suggesting that it may be useful in flows in which RDT is not accurate.
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Figure 14. The fluctuating temperature gradient anisotropy tensor C ′
ij versus s in the straining

region for the active grid measurement. Here, s = 0 and s = 2.85 refer to the beginning and the
end of the effective contraction. Circles: C ′

11; squares: C ′
22. The solid lines represent numerical

integration of (2.28) for both C ′
11 and C ′

22, using the model constants from figure 11. The
dashed lines represent integration of (2.28) when the model constants are set to zero.

Application of the model requires that the relation between the mechanical and the
thermal time scales is known. However we suggest that for higher strain rates the
evolution of the scalar dissipation is well predicted by RDT (figure 7).

We thank S. B. Pope for discussions about the modelling and S. Ayyalasomayajula
for his insights and help with the experiment. This work was funded by the US
National Science Foundation.
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